ใยแก้วนำแสง (Optic Fiber) ทำจากแก้วหรือพลาสติกมีลักษณะเป็นเส้นบางๆ คล้าย เส้นใยแก้วจะทำตัวเป็นสื่อในการส่งแสงเลเซอร์ที่มีความเร็วในการส่งสัญญาณเท่ากับ ความเร็วของแสง หลักการทั่วไปของการสื่อสารในสายไฟเบอร์ออปติกคือการเปลี่ยนสัญญาณ (ข้อมูล) ไฟฟ้าให้เป็นคลื่นแสงก่อน จากนั้นจึงส่งออกไปเป็นพัลส์ ของแสง ผ่านสายไฟเบอร์ออปติกสายไฟเบอร์ออปติกทำจากแก้วหรือพลาสติกสามารถส่งลำแสง ผ่านสายได้ทีละหลาย ๆ ลำแสงด้วยมุมที่ต่างกัน ลำแสงที่ส่งออกไปเป็นพัลส์นั้นจะสะท้อนกลับไปมาที่ผิวของสายชั้นในจนถึงปลายทาง
จากสัญญาณข้อมูลซึ่งอาจจะเป็นสัญญาณอนาล็อกหรือดิจิตอล จะผ่านอุปกรณ์ที่ทำหน้าที่มอดูเลตสัญญาณเสียก่อน จากนั้นจะส่งสัญญาณมอดูเลต ผ่านตัวไดโอดซึ่งมี 2 ชนิดคือ LED ไดโอด (light Emitting Diode) และเลเซอร์ไดโอด หรือ ILD ไดโอด (Injection Leser Diode) ไดโอดจะมีหน้าที่เปลี่ยนสัญญาณมอดูเลตให้เป็นลำแสงเลเซอร์ซึ่งเป็นคลื่นแสงในย่านที่มองเห็นได้ หรือเป็นลำแสงในย่านอินฟราเรดซึ่งไม่สามารถมองเห็นได้ ความถี่ย่านอินฟราเรดที่ใช้จะอยู่ในช่วง 1014-1015 เฮิรตซ์ ลำแสงจะถูกส่งออกไปตามสายไฟเบอร์ออปติก เมื่อถึงปลายทางก็จะมีตัวโฟโต้ไดโอด (Photo Diode) ที่ทำหน้าที่รับลำแสงที่ถูกส่งมาเพื่อเปลี่ยนสัญญาณแสงให้กลับไปเป็นสัญญาณมอดูเลตตามเดิม จากนั้นก็จะส่งสัญญาณผ่านเข้าอุปกรณ์ดีมอดูเลต เพื่อทำการดีมอดูเลตสัญญาณมอดูเลตให้เหลือแต่สัญญาณข้อมูลที่ต้องการ
สายไฟเบอร์ออปติกสามารถมีแบนด์วิดท์ (BW) ได้กว้างถึง 3 จิกะเฮิรตซ์ (1 จิกะ = 109) และมีอัตราเร็วในการส่งข้อมูลได้ถึง 1 จิกะบิต ต่อวินาที ภายในระยะทาง 100 กม. โดยไม่ต้องการเครื่องทบทวนสัญญาณเลย สายไฟเบอร์ออปติกสามารถมีช่องทางสื่อสารได้มากถึง 20,000-60,000 ช่องทาง สำหรับการส่งข้อมูลในระยะทางไกล ๆ ไม่เกิน 10 กม. จะสามารถมีช่องทางได้มากถึง 100,000 ช่องทางทีเดียว
|
|
ข้อดีของใยแก้วนำแสดงคือ
1. ป้องกันการรบกวนจากสัญญาณไฟฟ้าได้มาก 2. ส่งข้อมูลได้ระยะไกลโดยไม่ต้องมีตัวขยายสัญญาณ 3. การดักสัญญาณทำได้ยาก ข้อมูลจึงมีความปลอดภัยมากกว่าสายส่งแบบอื่น 4. ส่งข้อมูลได้ด้วยความเร็วสูงและสามารถส่งได้มาก ขนาดของสายเล็กและน้ำหนักเบา |
|
สื่อกลางประเภทไม่มีสาย
|
ระบบไมโครเวฟ (Microwave System) การส่งสัญญาณข้อมูลไปกลับคลื่นไมโครเวฟเป็นการส่งสัญญาณข้อมูลแบบรับช่วงต่อๆ กันจากหอ (สถานี) ส่ง-รับสัญญาณหนึ่งไปยังอีกหอหนึ่ง แต่ละหาจะครอบคลุมพื้นที่รับสัญญาณประมาณ 30-50 กม. ระยะห่างของแต่ละหอคำนวณง่าย ๆ ได้จาก
สูตร
d = 7.14 (1.33h)1/2 กม.
เมื่อ d = ระยะห่างระหว่างหอ h = ความสูงของหอ |
|
การส่งสัญญาณข้อมูลไมโครเวฟมักใช้กันในกรณีที่การติดตั้งสายเคเบิลทำได้ไม่สะดวก เช่น ในเขตเมืองใหญ่ ๆ หรือในเขตที่ป่าเขา แต่ละสถานีไมโครเวฟจะติดตั้งจานส่ง-รับสัญญาณข้อมูล ซึ่งมีเส้นผ่าศูนย์กลางประมาณ 10 ฟุต สัญญาณไมโครเวฟเป็นคลื่นย่านความถี่สูง (2-10 จิกะเฮิรตซ์) เพื่อป้องกันการแทรกหรือรบกวนจากสัญญาณอื่น ๆ แต่สัญญาณอาจจะอ่อนลง หรือหักเหได้ในที่มีอากาศร้อนจัด พายุหรือฝน ดังนั้นการติดตั้งจาน ส่ง-รับสัญญาณจึงต้องให้หันหน้าของจานตรงกัน และหอยิ่งสูงยิ่งส่งสัญญาณได้ไกล
ปัจจุบันมีการใช้การส่งสัญญาณข้อมูลทางไมโครเวฟกันอย่างแพร่หลาย สำหรับการสื่อสารข้อมูลในระยะทางไกล ๆ หรือระหว่างอาคาร โดยเฉพาะในกรณีที่ไม่สะดวกที่จะใช้สายไฟเบอร์ออปติก หรือการสื่อสารดาวเทียม อีกทั้งไมโครเวฟยังมีราคาถูกกว่า และติดตั้งได้ง่ายกว่า และสามารถส่งข้อมูลได้คราวละมาก ๆ ด้วย อย่างไรก็ตามปัจจัยสำคัญที่ทำให้สื่อกลางไมโครเวฟเป็นที่นิยม คือราคาที่ถูกกว่า |
การสื่อสารด้วยดาวเทียม (Satellite Transmission) ที่จริงดาวเทียมก็คือสถานีไมโครเวฟลอยฟ้านั่นเอง ซึ่งทำหน้าที่ขยายและทบทวนสัญญาณข้อมูล รับและส่งสัญญาณข้อมูลกับสถานีดาวเทียม ที่อยู่บนพื้นโลก สถานีดาวเทียมภาคพื้นจะทำการส่งสัญญาณข้อมูล ไปยังดาวเทียมซึ่งจะหมุนไปตามการหมุนของโลกซึ่งมีตำแหน่งคงที่เมื่อเทียมกับ ตำแหน่งบนพื้นโลก ดาวเทียมจะถูกส่งขึ้นไปให้ลอยอยู่สูงจากพื้นโลกประมาณ 23,300 กม. เครื่องทบทวนสัญญาณของดาวเทียม (Transponder) จะรับสัญญาณข้อมูลจากสถานีภาคพื้นซึ่งมีกำลังอ่อนลงมากแล้วมาขยาย จากนั้นจะทำการทบทวนสัญญาณ และตรวจสอบตำแหน่งของสถานีปลายทาง แล้วจึงส่งสัญญาณข้อมูลไปด้วยความถี่ในอีกความถี่หนึ่งลงไปยังสถานีปลายทาง การส่งสัญญาณข้อมูลขึ้นไปยังดาวเทียมเรียกว่า "สัญญาณอัปลิงก์" (Up-link) และการส่งสัญญาณข้อมูลกลับลงมายังพื้นโลกเรียกว่า "สัญญาณ ดาวน์-ลิงก์ (Down-link)
ลักษณะของการรับส่งสัญญาณข้อมูลอาจจะเป็นแบบจุดต่อจุด (Point-to-Point) หรือแบบแพร่สัญญาณ (Broadcast) สถานีดาวเทียม 1 ดวง สามารถมีเครื่องทบทวนสัญญาณดาวเทียมได้ถึง 25 เครื่อง และสามารถครอบคลุมพื้นที่การส่งสัญญาณได้ถึง 1 ใน 3 ของพื้นผิวโลก ดังนั้นถ้าจะส่งสัญญาณข้อมูลให้ได้รอบโลกสามารถทำได้โดยการส่งสัญญาณผ่านสถานีดาวเทียมเพียง 3 ดวงเท่านั้น |
|
ระหว่างสถานีดาวเทียม 2 ดวง ที่ใช้ความถี่ของสัญญาณเท่ากันถ้าอยู่ใกล้กันเกินไปอาจจะทำให้เกิดการรบกวนสัญญาณ ซึ่งกันและกันได้ เพื่อหลีกเลี่ยงการรบกวน หรือชนกันของสัญญาณดาวเทียม จึงได้มีการกำหนดมาตรฐานระยะห่างของสถานีดาวเทียม และย่านความถี่ของสัญญาณดังนี้
- ระยะห่างกัน 4 องศา (วัดมุมเทียงกับจุดศูนย์กลางของโลก) ให้ใช้ย่านความถี่ของสัญญาณ 4/6 จิกะเฮิรตซ์ หรือย่าน C แบนด์โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ 5.925-6.425 จิกะเฮิรตซ์ และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ 3.7-4.2 จิกะเฮิรตซ์
- ระยะห่างกัน 3 องศา ให้ใช้ย่านความถี่ของสัญญาณ 12/14 จิกะเฮิรตซ์ หรือย่าน KU แบนด์ โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ 14.0-14.5 จิกะเฮิรตซ์ และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ 11.7-12.2 จิกะเฮิรตซ์
นอกจากนี้สภาพอากาศ เช่น ฝนหรือพายุ ก็สามารถทำให้สัญญาณผิดเพี้ยนไปได้เช่นกัน สำหรับการส่งสัญญาณข้อมูลนั้นในแต่ละเครื่องทบทวนสัญญาณจะมีแบนด์วิดท์เท่ากับ 36 เมกะเฮิรตซ์ และมีอัตราเร็วการส่งข้อมูลสูงสุดเท่ากับ 50 เมกะบิตต่อวินาที
ข้อเสีย ของการส่งสัญญาณข้อมูลทางดาวเทียมคือ สัญญาณข้อมูลสามารถถูกรบกวนจากสัญญาณภาคพื้นอื่น ๆ ได้ อีกทั้งยังมีเวลาประวิง (Delay Time) ในการส่งสัญญาณเนื่องจากระยะทางขึ้น-ลง ของสัญญาณ และที่สำคัญคือ มีราคาสูงในการลงทุนทำให้ค่าบริการสูงตามขึ้นมาเช่นกัน |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น